SeminarTopics.in

3D Password

The 3D passwords are more customizable and very interesting way of authentication. Now the passwords are based on the fact of Human memory. Generally simple passwords are set so as to quickly recall them. The human memory, in our scheme has to undergo the facts of Recognition, Recalling, Biometrics or Token based authentication. Once implemented and you log in to a secure site, the 3D password GUI opens up. This is an additional textual password which the user can simply put. Once he goes through the first authentication, a 3D virtual room will open on the screen. In our case, let’s say a virtual garage. Now in a day to day garage one will find all sorts of tools, equipments, etc.each of them having unique properties. The user will then interact with these properties accordingly. Each object in the 3D space, can be moved around in an (x,y,z) plane. That’s the moving attribute of each object. This property is common to all the objects in the space. Suppose a user logs in and enters the garage. He sees and picks a screw-driver (initial position in xyz coordinates (5, 5, 5)) and moves it 5 places to his right (in XY plane i.e. (10, 5, 5).That can be identified as an authentication. Only the true user understands and recognizes the object which he has to choose among many. This is the Recall and Recognition part of human memory coming into play. Interestingly, a password can be set as approaching a radio and setting its frequency to number only the user knows. Security can be enhanced by the fact of including Cards and Biometric scanner as input. There can be levels of authentication a user can undergo

Current authentication systems suffer from many weaknesses. Textual passwords are commonly used. Users tend to choose meaningful words from dictionaries, which make textual passwords easy to break and vulnerable to dictionary or brute force attacks. Many available graphical passwords have a password space that is less than or equal to the textual password space. Smart cards or tokens can be stolen. Many biometric authentications have been proposed. However, users tend to resist using biometrics because of their intrusiveness and the effect on their privacy. Moreover, biometrics cannot be revoked. The 3Dpassword is a multi factor authentication scheme. The design of the 3D virtual environment and the type of objects selected determine the 3D password key space. User have freedom to select whether the 3D password will be solely recall, recognition, or token based, or combination of two schemes or more.

Brief Description of System

The proposed system is a multi factor authentication scheme. It can combine all existing authentication schemes into a single 3D virtual environment .This 3D virtual environment contains several objects or items with which the user can interact. The user is presented with this 3D virtual environment where the user navigates and interacts with various objects. The sequence of actions and interactions toward the objects inside the 3D environment constructs the user’s 3D password. The 3D password can combine most existing authentication schemes such as textual passwords, graphical passwords, and various types of biometrics into a 3D virtual environment. The choice of what authentication schemes will be part of the user's 3D password reflects the user's preferences and requirements. A user who prefers to remember and recall a password might choose textual and graphical password as part of their 3D password. On the other hand users who have more difficulty with memory or recall might prefer to choose smart cards or biometrics as part of their 3D password. Moreover user who prefers to keep any kind of biometric data private might not interact with object that requires biometric information. Therefore it is the user's choice and decision to construct the desired and preferred 3D password.

The 3D password is a multi factor authentication scheme. The 3D password presents a 3D virtual environment containing various virtual objects. The user navigates through this environment and interacts with the objects. The 3D password is simply the combination and the sequence of user interactions that occur in the 3D virtual environment. The 3D password can combine recognition, recall, token, and biometrics based systems into one authentication scheme. This can be done by designing a 3D virtual environment that contains objects that request information to be recalled, information to be recognized, tokens to be presented, and biometric data to be verified.

3D Virtual Environment Design Guidelines



The design of the 3 D virtual environments affects the usability, effectiveness, acceptability of 3D password. The first step in building a 3D password system is to design a 3D environment that reflects the administration needs and the security requirements. The design of 3D virtual environments should follow these guidelines.

1) Real Life Similarity The prospective 3D virtual environment should reflect what people are used to seeing in real life. Objects used in virtual environments should be relatively similar in size to real objects (sized to scale). Possible actions and interactions toward virtual objects should reflect real life situations. Object responses should be realistic. The target should have a 3D virtual environment that users can interact

2) Object uniqueness and distinction every virtual object or item in the 3D virtual environment is different from any other virtual object. The uniqueness comes from the fact that every virtual object has its own attributes such as position. Thus, the prospective interaction with object 1 is not equal to the interaction with object 2. How ever, having similar objects such as 20 computers in one place might confuse the user. Therefore, the design of the 3D virtual environment should consider that every object should be distinguishable from other objects. Similarly, in designing a 3D virtual environment, it should be easy for users to navigate through and to distinguish between objects. The distinguishing factor increases the user’s recognition of objects. Therefore, it improves the system usability.

3) Three Dimensional Virtual Environment Size A 3D virtual environment can depict a city or even the world. On the other hand, it can depict a space as focused as a single room or office. A large 3D virtual environment will increase the time required by the user to perform a 3D password. Moreover, a large 3D virtual environment can contain a large number of virtual objects. Therefore, the probable 3D password space broadens. However, a small 3D virtual environment usually contains only a few objects, and thus, performing a 3D password will take less time.

4) Number of objects and their types Part of designing a 3D virtual environment is determining the types of objects and how many objects should be placed in the environment. The types of objects reflect what kind of responses the object will have. For simplicity, we can consider requesting a textual password or a fingerprint as an object response type. Selecting the right object response types and the number of objects affects the probable password space of a 3D password.

5) System Importance The 3D virtual environment should consider what systems will be protected by a 3D password The number of objects and the types of objects that Have been used in the 3D virtual environment should reflect the importance of the protected system

The 3D password can have a password space that is very large compared to other authentication schemes, so the 3D password’s main application domains are protecting critical systems and resources.

1. Critical server many large organizations have critical servers that are usually protected by a textual password. A 3D password authentication proposes a sound replacement for a textual password.

2. Nuclear and military facilities such facilities should be protected by the most Powerful authentication systems. The 3D password has a very large probable password space, and since it can contain token, biometrics, recognition and knowledge based Authentications in a single authentication system, it is a sound choice for high level security locations.

3. Airplanes and jet fighters Because of the possible threat of misusing airplanes and jet fighters for religion, political agendas, usage of such airplanes should be protected by a powerful authentication system

 

Security Analysis

3D Password space size

To determine the password space, we have to count all possible 3D passwords that have a certain number of actions, interactions, and inputs towards all objects that exist in the 3D virtual environments.

3D password distribution knowledge

Users tend to use meaningful words for textual passwords. Therefore finding these different words from dictionary is a relatively simple task which yields a high success rate for breaking textual passwords. Pass faces users tend to choose faces that reflect their own taste on facial attractiveness, race, and gender.

Every user has different requirements and preferences when selecting the appropriate 3D Password. This fact will increase the effort required to find a pattern of user’s highly selected 3D password. In addition, since the 3D password combines several authentication schemes into a single authentication environment, the attacker has to study every single authentication scheme and has to discover what the most probable selected secrets are. Since every 3D password system can be designed according to the protected system requirements, the attacker has to separately study every 3D password system. Therefore, more effort is required to build the knowledge of most probable 3D passwords.

Attacks and Countermeasures

To realize and understand how far an authentication scheme is secure, we have to consider all possible attack methods. We have to study whether the authentication scheme proposed is immune against such attacks or not. Moreover, if the proposed authentication scheme is not immune, we then have to find the countermeasures that prevent such attacks. In this section, we try to cover most possible attacks and whether the attack is valid or not. Moreover, we try to propose countermeasures for such attacks.

Related Seminar Topics