SeminarTopics.in

Published on Feb 12, 2016

Abstract

Quantum cryptography is an effort to allow two users of a common communication channel to create a body of shared and secret information. This information, which generally takes the form of a random string of bits, can then be used as a conventional secret key for secure communication. It is useful to assume that the communicating parties initially share a small amount of secret information, which is used up and then renewed in the exchange process, but even without this assumption exchanges are possible.

Description of Quantum Cryptography

The advantage of quantum cryptography over traditional key exchange methods is that the exchange of information can be shown to be secure in a very strong sense, without making assumptions about the intractability of certain mathematical problems. Even when assuming hypothetical eavesdroppers with unlimited computing power, the laws of physics guarantee (probabilistically) that the secret key exchange will be secure, given a few other assumptions.

Cryptography is the art of devising codes and ciphers, and cryptoanalysis is the art of breaking them. Cryptology is the combination of the two. In the literature of cryptology, information to be encrypted is known as plaintext, and the parameters of the encryption function that transforms are collectively called a key. Existing cryptographic techniques are usually identified as ``traditional'' or ``modern.'' Traditional techniques date back for centuries, and are tied to the the operations of transposition (reordering of plaintext) and substitution (alteration of plaintext characters). Traditional techniques were designed to be simple, and if they were to be used with great secrecy extremely long keys would be needed. By contrast, modern techniques rely on convoluted algorithms or intractable problems to achieve assurances of security.