Published on Feb 12, 2016


Since its inception at Xerox Corporation in the early 1970s, Ethernet has been the dominant networking protocol. Of all current networking protocols, Ethernet has, by far, the highest number of installed ports and provides the greatest cost performance relative to Token Ring, Fiber Distributed Data Interface (FDDI), and ATM for desktop connectivity. Fast Ethernet, which increased Ethernet speed from 10 to 100 megabits per second (Mbps), provided a simple, cost-effective option for backbone and server connectivity.

Description of Gigabit Ethernet

In 1995 ,the Fast Ethernet Standard was approved by the IEEE. Fast Ethernet provided 10 times higher bandwidth, and other new features such as full-duplex operation, and auto-negotiation. This established Ethernet as a scalable technology. The Fast Ethernet standard was pushed by an industry consortium called the Fast Ethernet Alliance. A similar alliance, called the Gigabit Ethernet Alliance was formed by 11 companies in May 1996 , soon after IEEE announced the formation of the 802.3z

Gigabit Ethernet Standards project. At last count, there were over 95 companies in the alliance from the networking, computer and integrated circuit industries.Gigabit Ethernet builds on top of the Ethernet protocol, but increases speed tenfold over Fast Ethernet to 1000 Mbps, or 1 gigabit per second (Gbps). This protocol, which was standardized in June 1998, promises to be a dominant player in high-speed local area network backbones and server connectivity. Since Gigabit Ethernet significantly leverages on Ethernet, customers will be able to leverage their existing knowledge base to manage and maintain gigabit networks.Gigabit Ethernet employs the same Carrier Sense Multiple Access with Collision Detection (CSMA/CD) protocol, same frame format and same frame size as its predecessors.