SeminarTopics.in

Abstract of Six Stroke Engine

Six Stroke engine, the name itself indicates a cycle of six strokes out of which two are useful power strokes. According to its mechanical design, the six-stroke engine with external and internal combustion and double flow is similar to the actual internal reciprocating combustion engine. However, it differentiates itself entirely, due to its thermodynamic cycle and a modified cylinder head with two supplementary chambers: combustion and an air heating chamber, both independent from the cylinder. In this the cylinder and the combustion chamber are separated which gives more freedom for design analysis. Several advantages result from this, one very important being the increase in thermal efficiency.

It consists of two cycles of operations namely external combustion cycle and internal combustion cycle, each cycle having four events. In addition to the two valves in the four stroke engine two more valves are incorporated which are operated by a piston arrangement.

The Six Stroke is thermodynamically more efficient because the change in volume of the power stroke is greater than the intake stroke and the compression stroke. The main advantages of six stroke engine includes reduction in fuel consumption by 40%, two power strokes in the six stroke cycle, dramatic reduction in pollution, adaptability to multi fuel operation. Six stroke engine's adoption by the automobile industry would have a tremendous impact on the environment and world economy.

Analysis Of Six Stroke Engine

Six-stroke engine is mainly due to the radical hybridization of two- and four-stroke technology. The six-stroke engine is supplemented with two chambers, which allow parallel function and results a full eight-event cycle: two four-event-each cycles, an external combustion cycle and an internal combustion cycle. In the internal combustion there is direct contact between air and the working fluid, whereas there is no direct contact between air and the working fluid in the external combustion process. Those events that affect the motion of the crankshaft are called dynamic events and those, which do not effect are called static events.