SeminarTopics.in

Paper Battery

A paper battery is a flexible, ultra-thin energy storage and production device formed by combining carbon nanotube s with a conventional sheet of cellulose-based paper. A paper battery acts as both a high-energy battery and supercapacitor , combining two components that are separate in traditional electronics . This combination allows the battery to provide both long-term, steady power production and bursts of energy. Non-toxic, flexible paper batteries have the potential to power the next generation of electronics, medical devices and hybrid vehicles, allowing for radical new designs and medical technologies.

Paper batteries may be folded, cut or otherwise shaped for different applications without any loss of integrity or efficiency . Cutting one in half halves its energy production. Stacking them multiplies power output. Early prototypes of the device are able to produce 2.5 volt s of electricity from a sample the size of a postage stamp.

The devices are formed by combining cellulose with an infusion of aligned carbon nanotubes that are each approximately one millionth of a centimeter thick. The carbon is what gives the batteries their black color. These tiny filaments act like the electrode s found in a traditional battery, conducting electricity when the paper comes into contact with an ionic liquid solution. Ionic liquids contain no water, which means that there is nothing to freeze or evaporate in extreme environmental conditions. As a result, paper batteries can function between -75 and 150 degrees Celsius.

One method of manufacture, developed by scientists at Rensselaer Polytechnic Institute and MIT, begins with growing the nanotubes on a silicon substrate and then impregnating the gaps in the matrix with cellulose. Once the matrix has dried, the material can be peeled off of the substrate, exposing one end of the carbon nanotubes to act as an electrode . When two sheets are combined, with the cellulose sides facing inwards, a supercapacitor is formed that can be activated by the addition of the ionic liquid. This liquid acts as an electrolyte and may include salt-laden solutions like human blood, sweat or urine. The high cellulose content (over 90%) and lack of toxic chemicals in paper batteries makes the device both biocompatible and environmentally friendly, especially when compared to the traditional lithium ion battery used in many present-day electronic devices and laptops.

Widespread commercial deployment of paper batteries will rely on the development of more inexpensive manufacturing techniques for carbon nanotubes. As a result of the potentially transformative applications in electronics, aerospace, hybrid vehicles and medical science, however, numerous companies and organizations are pursuing the development of paper batteries. In addition to the developments announced in 2007 at RPI and MIT, researchers in Singapore announced that they had developed a paper battery powered by ionic solutions in 2005. NEC has also invested in R & D into paper batteries for potential applications in its electronic devices.

 




Related Seminar Topics